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ABSTRACT

Most flows of aerodynamic interest are compressible and turbulent. How-

ever, our present knowledge on the structures and mechanisms of turbulence

is mostly based on incompressible flows. In the present work, compress-

ibility effects in turbulent, high-speed, boundary layer flows are systemati-

cally investigated using the Direct Numerical Simulation (DNS) approach.

Three-dimensional, time-dependent, fully nonlinear, compressible Navier-

Stokes equations were numerically integrated by high-order finite-difference

methods; no modeling for turbulence is used during the solution because the

available resolution is sufficient to capture the relevant scales.

The boundary layer problem deals with fully-turbulent compressible flows

over flat geometries. Apart from its practical relevance to technological flows,

turbulent compressible boundary layer flow is the simplest experimentally

realizable turbulent compressible flow. Still, measuring difficulties prohibit

a detailed experimental description of the flow, especially in the near-wall

region. DNS studies provide a viable means to probe the physics of com-

pressible turbulence in this region.

The focus of this work is to explore the paths of energy transfer through

which compressible turbulence is sustained. The structural similarities and

differences between the incompressible and compressible turbulence are also

investigated. The energy flow patterns or energy cascades are found to be

directly related to the evolution of vortical structures which are generated

in the near-wall region. Near-wall structures, and mechanisms which are

not readily accessible through physical experiments are analyzed and their

critical role on the evolution and the behavior of the flow is documented

extensively.



1 INTRODUCTION

Apart from its practical relevance to technological flows, the turbulent com-

pressible boundary layer flow is one of the simplest experimentally realizable

turbulent compressible flows. Still, measuring difficulties prohibit a detailed

description of compressible turbulence, especially in the near-wall region.

Typically, the measurements are limited to the region above 0.1 boundary

layer thickness, excluding the near-wall region (Kistler 1959, Spina, Donovan

& Smits 1991). The lack of reliable data in the near-wall region where prac-

tically most of turbulence production and turbulence dissipation take place

significantly retards the development of a theory of compressible turbulence.

The focus of this paper is to provide a detailed description of compressible

turbulence in supersonic boundary layers through direct numerical simula-

tions as an adjunct to experimental observations.

Numerical simulations of compressible turbulence have been used to inves-

tigate simple flows in the recent years. Passot & Pouquet (1987) performed

two-dimensional simulations of compressible, homogeneous turbulent flow

for Reynolds numbers (based on a characteristic length of the medium and

mean velocity) up to 500 and Mach numbers (based on fluctuating velocity

field) of up to 2. Their computational results showed that for Mach numbers

smaller than 0.3 the flow remains quasi-incompressible. Porter, Pouquet &

Woodward (1992) performed a three-dimensional simulation of supersonic,

homogeneous turbulence and studied the formation of shocklets and their

contribution to the vorticity production in the initial (transient) stages. Er-

lebacher, Hussaini, Kreiss & Sarkar (1990) also captured the formation of

weak shocklets in the transient regime in their three-dimensional simulations.

They showed that the flow does not necessarily remain quasi-incompressible

at later times when the initial perturbation velocity field is solenoidal. Sarkar,

Erlebacher, Hussaini & Kreiss (1991b) evaluated the statistical moments us-

ing this data base obtaining correlations for compressible turbulence models.

Feiereisen, Reynolds & Ferziger (1981) performed a three-dimensional, direct

simulation of compressible, turbulent homogeneous shear flow and concluded

that this anisotropic flow is not influenced by the compressibility to a large

extent. In their homogeneous shear flow simulations implementing incom-

pressible initial conditions on the velocities, Sarkar, Erlebacher & Hussaini

(1991a) obtained subdued growth of turbulent kinetic energy with increas-

ing fluctuation Mach number as well as increasing root-mean-square (r.m.s.)



3

density fluctuations.

Although these previous computational studies have contributed signif-

icantly to the understanding of fundamental mechanisms of compressible

turbulence, it is generally accepted that while homogeneous turbulence is

ever decreasing, the homogeneous shear turbulence is ever growing, if not

monotonously in time certainly homogeneously in space. The dynamics

and structure of turbulence in flows of aerodynamic interest can be learned

through the investigation of more realistic flow fields which are both anisotropic

and inhomogeneous, and contain both turbulence production and the means

to balance it.

Morkovin (1962) compiled a hypothesis based on the limited body of data

stating that the direct effects of density fluctuations on turbulence behavior

are small if the r.m.s, density fluctuation is small compared with the abso-

lute (mean) density. Originally the hypothesis was advanced to explain time-

averaged behavior and was thought to apply to boundary layers with the free
stream Mach number less than five. As acoustic fluctuations do not assume a

dominant role within the limits of the Morkovin hypothesis, the only appar-

ent compressibility effect is due to the mean density gradient. In this regard,

the hypothesis is a generalization of the "Reynolds Analogy" which applies

to the heated, incompressible boundary layers. Bradshaw (1977) reviewed

Morkovin's conclusions and extracted the safe limits for the applicability of

the hypothesis which coincided with the usual definition of hypersonic limits.

At the height of the conclusions from Morkovin and Bradshaw, several semi-

empirical relationships can be built parallel to the incompressible formula-

tions (Coles 1964) with the proper treatment of the density variation across

the boundary layer. However, recent experiments (Smits, Spina, Alving,

Smith, Fernando & Donovan 1989, Spina & Smits 1987) indicate interesting

structural differences between the supersonic and subsonic boundary layers

in the outer layers. Moreover, these experiments indicate that the Mach

number gradient becomes very high near the wall (Smits et al. 1989). Conse-

quently, it is possible that the fluctuating Mach number, which is a measure

of density fluctuations, increases beyond unity in the near-wall region where

turbulent production and dissipation peaks. The turbulence structure and

the role of organized motions which are well-documented in incompressible

flows can potentially be even more significant in the compressible supersonic

boundary layers. The coupling and interaction of near-wall structures with

the outer layer structures can be different in the supersonic flows than the
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subsonic flows. An assessment and investigation of these issues comprise the

focus of the present work.

2 GOVERNING EQUATIONS

We consider viscous compressible flows governed by the Navier-Stokes equa-

tions and the thermodynamic equation of state. The fluid medium is assumed

to be a heat-conducting perfect gas and a Cartesian frame of reference is con-

sidered (Figure 1). In what follows, free-stream values are denoted by sub-

script ()_ and superscript ()* is used for dimensional quantities. The velocity

vector is u = (u, v, w) and scalar flow variables are density p, temperature

T, and pressure p. Displacement thickness,

61 _--- 1 dy, (1)

is used as the length scale in the nondimensionalization because, apart from

its physical relevance, it is easier to control this quantity during the nu-

merical simulations. Time, velocity, density, pressure and temperature are

scaled with 51lUg, U_, p*_, p;oU_ 2, and T_ respectively. Thermophysical

properties, viscosity and heat conductivity (#* and k*), are also scaled with

their respective values in the free-stream. The governing equations can be

expressed in vector form using dimensionless variables as:

Op
0--7+ v • (pu) = o, (2)

Opu
o--V + v • (pu o u) = -Vp + v • _-, (3)

OET

Ot (4)-- + V • [(ET + p)u] + V ° q* = V • (l-u),

p = pnT, (5)

where • represents the vector/tensor inner product while o is the outer prod-

uct operation. Total energy per unit mass, ET, and viscous stress tensor, _-,
are defined as:

( ll)M2T U2 + V2 + W2)ET=p _'(3'- + 2 (6)
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7" = _--_e[Vu + (Vu) T] + _-_e(V • u)I. (7)

In the equations above ()T is the transpose operator, and I is the identity

matrix. Also, A is the second coefficient of viscosity and is assumed to obey

Stokes hypothesis, i.e.

g + 3/2)_ = 0. (8)

Heat-flux rate is denoted by q = (q_,q_,,qz) and is assumed to obey the
Fourier law of heat conduction:

k
VT (9)

q= RePrM2(_- 1)

Reynolds number, Mach number and Prandtl number are defined as:

Re- U_5_ M- U_o Pr- #_C; (10)

Furthermore, _ =C_-C_ is the gas constant and the variation of the Prandtl

number Pr, and specific heats C_, C_ with temperature is neglected. In the

present study, Pr and specific heat ratio _=C_/C_ are taken to be 0.7 and

1.4 respectively. The dimensionless form of Sutherland's law for viscosity is

expressed as:

#=k=T_ 1+S
T+S' (11)

where S = 110.4K/T; and TI* = 288.15K.

The present model neglects the streamwise growth of the boundary layer

by assuming periodicity in this direction. The most important advantage of

this assumption is the avoidance of artificial inflow/outflow conditions. An-

other benefit is the improvement of the statistical quantities of turbulence by

allowing averaging along the streamwise direction. And still another signifi-

cant gain is that one can use all the available computer resources to resolve

one wavelength (or correlation length) thus improving the statistical accu-

racy. On the other hand, boundary-layer type solutions no longer satisfy the

full Navier-Stokes equations under the streamwise-periodicity assumption. In

order to obtain a shear profile as realistically close to the turbulent compress-

ible boundary layer flow as possible, forcing functions are introduced into the

x-momentum and energy equations as source terms on the right hand sides:



x-momentum:

Energy equation:

0 (.b oubf x - cOy n e -_y ] ' (12)

1 cO (#bcoTb)f_= PrM2(7-1) Oy -fie COy

CO( Oub+ N (13)
where the base profile is denoted by subscript ()b and is obtained as the so-

lution of turbulent compressible mean flow equations. Consistent with the

parallel base flow assumptions, the only non-zero component of the base ve-

locity is the streamwise component; the pressure is kept constant across the

boundary layer. The same form of the forcing functions was also used by

Erlebacher _ Hussaini (1989) in their simulations of supersonic boundary-

layer stability. It should be noted that this approach allows for the nonlinear

distortion of the global mean motion when disturbances are introduced and

imposes no restrictions on the evolution of the mean flow or of the fluctua-

tions.

Periodicity is also imposed in the spanwise, z, direction. Along the y

direction, no-slip and adiabatic conditions are imposed at the wall:

u - v -- w -- O, (14)

cOT cOp
- -0. (15)

cOy cOy

Along the top surface, zero-gradient (shear-free) condition is imposed on all
variables:

cOu cOy cOw
= - -0, (16)

COT COp
- -0. (17)

cOy cOy
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3 COMPUTATIONAL APPROACH

The solution procedure used in the present work is the Two-Four method

proposed by Gottlieb & Turkel (1976), as a fourth-order variant of the

fully-explicit MacCormack method yielding fourth-order accuracy in space

and second-order accuracy in time. The Two-Four scheme is highly phase-

accurate and is very suitable for wave propagation and wave interaction prob-

lems (Biringen & Saati 1990). The allowable time step, At, for the current

fully explicit method depends on the Courant Number (CFL) which is de-

fined as:

CFL = At maximum [[ul Iv[ Iwl
grid [ZXx+ + --/',z

+a + Ay----T + Az---T

1 1)]Re _ + -- + (18)Ay 2 _ '

where the term vis is given as,

max (/t, A + 2#, "_r )
vis = , (19)

P

and a is the local speed of sound,

= (20)a

The stability of the numerical scheme is ensured for CFL _< 1 and the scheme

is optimized for CFL _, 2/3.

Resolution Requirements

One reason for undertaking the DNS approach is that it is free from any

assumptions of a turbulence model. For the very same reason, the resolution

and the computational box size are crucial parameters to be determined in

the direct simulations. Ideally, all relevant scales of the turbulent flow must

be captured in all parts of the flow field. The resolution should be fine enough
to resolve the finest scales of the turbulent motion while the domain should

allow for the development of the largest turbulent structures.
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Physical experiments on compressible boundary layers have revealed that

large scale turbulent structures are of the same order of size (within a fac-

tor of 2) as the incompressible ones (Smits et al. 1989). Therefore in the

present work, in choosing the dimensions of the computational box and grid

resolution, the limits set by the previous incompressible DNS studies on tur-

bulent wall-shear layers (Spalart 1988) was adopted; the final optimization

was achieved through successive steps in an iterative procedure. Initial calcu-

lations were performed on a coarse grid with (Nx x Ny x Nz) = (66 x 64 x 66)

number of grid points in the x, y, and z directions, respectively. A high

value for the Reynolds number was used (R%=10,000) to excite the initial

random disturbances of low amplitude (1%). The Mach number was ini-

tially set to 0.5 to prevent the formation of strong shock-waves during the

first transients. The Mach number was then incrementally increased to 1.5

and then to 2.5, the supersonic values of eventual interest. After the initial

transients were settled, Re_ 1 was reduced to 1000 and the resolution was

incrementally increased to 258 x 128 x 130 and subsequently to the final

value of 386 x 128 x 258. The flow field was interpolated from low-resolution

grid to high resolution as needed. In the wall-normal direction, the final do-

main extends to 7551 and there are approximately 11 points within 10 wall

units which is more conservative than the previous transition and turbulence

simulations of incompressible wall-shear layers.

Two simulations will be presented: the first one will be referred as Case-

Q1 and was performed at M = 2.5 and R% = 1000 at a resolution of

258 x 128 x 130. The second simulation will be referred as Case-Q2 and

is a continuation of Case-Q1 at a resolution of 386 x 128 x 258. After the

turbulence level was sustained in the simulations, the statistics were collected

for a total time of T = 187.2 in Case-q1 over 31 and T = 55.5 in Case-Q2

over 48 instantaneous data sets.

The temporal and spatial resolution level and the domain size used by

Spalart (1988) and in the present work are given in Table 1 indicating that

the present resolutions are comparable to previous incompressible DNS stud-

ies. Also included in Table 1 are the parameters used by Rai & Moin (1993)

in the spatial simulation of low-Math number transition to turbulence sim-

ulations, corresponding to the part of their domain where high resolution

was employed to resolve the turbulence and sustain it. Different time-steps

used in different studies are due to the different solution procedures and

time-stepping algorithms employed.
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Table 1: The computational domainsizeand the resolution usedby Spalart
(1988), Rai &: Moin (1993),and by the presentwork. I" correspondsto the
total time usedin the collection of statistics.

Study M Re_ 1 Nx x Ny x N_ Lx L_ Lz Ax + Az + At F

Spalart-I 0 500 128 x 50 x 96 100 ,_ 130 25 20 6.7 0.3 200

Spalart-II 0 1000 256 x 64 x 192 100 ,-_ 130 25 20 6.7 0.14 200

Spalart-III 0 2000 432 x 80 x 320 100 --, 130 25 20 6.7 0.07 200

Rai & Moin 0.1 1700 250 x 71 x 361 89 88 45 28 10.0 0.044 175

Case-Q1 2.5 1000 258 x 128 x 130 125 75 32 24.6 12.6 0.0057 143

Case-Q2 2.5 1000 386 x 128 x 258 125 75 32 16.2 6.2 0.0057 55

4 RESULTS

4.1 Mean Flow

In this section distributions of the mean quantities is presented. Temporal

behavior of variables is assumed to be statistically stationary and homo-

geneity in the two horizontal spatial directions is taken into consideration

throughout the analysis. The Reynolds-averaging was used in the calcu-

lation of mean-flow quantities and other higher-order turbulence statistics,

requiring ensemble averages in time and also in each of the homogeneous

directions x, and z. Denoting any flow quantity by ¢, this operation can be

written as:

- FL:Lz Jo Jo Jo

¢(x,y,z,t) dz dx dt. (21)

where F is the time interval over which the averaging is performed. The

separation of instantaneous quantities into mean and fluctuation parts are

generally done through Reynolds decomposition. Within the assumptions

adopted in this work this decomposition can be expressed as:

¢(x,y,z,t) = 3(Y) + ¢'(x,y, z, t), (22)
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Table 2: Inner-layer velocity and length scalesin the present simulations
comparedwith incompressiblework. Incompressibleresults were compiled
from the semi-empiricalformulaegiven White (1974).

M Re_, ,5--[ U_ L+ L +

Case-Q1

Case-Q2

2.5 1000 2.25 0.0504 50.4 113

2.5 1000 2.37 0.0499 49.9 118

0 500 7.73 0.0477 24 185

0 1000 7.73 0.0450 45 345

0 1500 7.73 0.0435 65 500

0 2000 7.73 0.0425 85 667

and by definition,

¢'=0. (23)

When presenting the mean flow data, inner layer velocity, u,, and length,

L +, scales are often used, especially in the analysis of near-wall behavior:

L + - #/P, (24)
tt r

and u_ is the friction velocity based on the average wall-shear stress, _--_:

u, = . (25)

The resulting nondimensional quantities are denoted by superscript ()+ fol-

lowing the usual convention. Reynolds decomposition (Eq. 22) is employed

in the definition of such quantities expressed in wall units, for example:

u+= --u (26)
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Table 2 compares the inner-layer scales with the incompressible values at

comparable Reynolds numbers. The ratio of the boundary layer thickness

to the viscous length scale, 6/L +, is a measure of the relative size of the

large-scale, outer-layer structures compared with the size of the small-scale,

inner-layer motions and is generally accepted to be a strong function of the

Reynolds number. The simple comparison provided by Table 2 shows that

this ratio is a weaker function of the Mach number. The impetus of the

present work is to reveal the effect of compressibility on the separation and

the dynamical coupling between the scales.
The distributions of mean and base streamwise velocities in wall units

are given in Figure 2. Very near the wall in the sublayer where y+ < 12,

satisfactory agreement with the expected linear distribution, u + = y+, is

obtained. In the outer layer where y+ > 100, the mean flow deviates signifi-

cantly from the base flow as the mean streamwise velocity profiles are devoid

of a wake (entrainment) region. As discussed earlier, the base flow was ob-

tained from the solutions of boundary-layer type equations. The assumptions

of the present work do not permit boundary layer growth and entrainment.

Therefore, the solution while keeping the correct behavior in the near-wall

region, converges onto a solution consistent with the adopted assumptions.

The density and the temperature fields show a variation of 250% at M =

2.5. This introduces significant density stratification across the boundary

layer thickness. Also, the Reynolds-mean dynamic viscosity shows a variation

of 70% at M = 2.5 which would have seriously handicapped a constant

viscosity assumption.

4.2 Fluctuation Fields

In this section, the behavior of fluctuating quantities is explained by using

second-order, one-point correlations in the context of Reynolds decomposi-

tion of time-dependent variables. The r.m.s, quantities are computed as:

Crm8 = V/¢--7-¢' (27)

where ¢ denotes any flow variable. Primitive variables such as density, ve-

locity and temperature are used to facilitate comparisons with compressible

boundary layer experiments as well as incompressible boundary layer studies.



12

Figure 3 gives the r.m.s, values of the velocity fluctuations normalized by

the friction velocity, u,, as a function of the distance from the wall in wall-

units. Close to the wall, the strongest fluctuations take place in the stream-

wise velocity. Fluctuations in the wMl-normal velocity decay most rapidly

close to the wall among the three velocity components, whereas away from the

wall, u+m8 and w+m8 fluctuations decay more rapidly than v+m,. This behav-

ior of the r.m.s, quantities is in agreement with previous turbulent boundary

layer studies. Figure 4 provides the comparison of the U+m_ distributions with

previous incompressible DNS of Spalart (1988), incompressible experiments

of Klebanoff (1955), and supersonic turbulent boundary layer experiments

of Kistler (1959). The distance from the wall is given in units of bound-

ary layer thickness, 5, to avoid the necessity of estimating the inner-layer

scales of the compressible experiments. In accordance with the simulations

of Spalart (1988), 5 is evaluated to be the distance from the wall at which

reaches 99.8% of its free-stream value, giving a good match with published

values, for instance with Klebanoff (1955). The Reynolds number in the ex-

periments are orders of magnitude larger than the computations, and the gap

is especially wide in the compressible studies. It can be observed from the

simulations of Spalart (1988) that the maximum of Urm _+ approaches the wall

as its magnitude increases with the Reynolds number. Increasing the Mach

number has an attenuating effect on the turbulence level as seen in the ex-

periments of Kistler (1959). Consequently, both the compressibility and the

low-Reynolds-number effects are strong in the present computations and act

in the same direction, i.e. reduce the turbulent intensities. The mild bulge

in the u+m_ distributions around 0.2 < y/5 < 0.8 in Figure 4 is attributed to

the mechanisms of streamwise boundary layer growth which is neglected in

the present model because of the streamwise periodicity assumption. Figure

5 displays turbulent primary shear stress, -(utv_) +, distributions. As typi-

cal of turbulent wall-shear layers, turbulent primary shear stress is positive

definite throughout the domain. The low Reynolds number in the present

computations combined with finite compressibility yields lower fluctuation

levels as well as a weaker turbulent shear stress. Although the vigor of

the fluctuations is much subdued in the low Reynolds numbers, the turbu-

lence generation and sustenance mechanisms are relatively uneffected by the

changes in the Reynolds number.

The basis of the Morkovin hypothesis (Morkovin 1962), Strong Reynolds

Analogy (Bradshaw 1977), is based on the similarity of density and temper-
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ature fluctuation fields to the velocity fluctuations,

p' T' u'
-- _ _ _ (3, - 1)M 2 (28)

T Uoo'

under the assumption that the pressure fluctuations are negligible, the ve-

locity fluctuations are small, and the Mach number is not larger than 4 or 5

(hence no appreciable changes in the stagnation temperature) for boundary

layer flows. Strong Reynolds Analogy implies that temperature and den-

sity fluctuations are caused by the transport of mean-temperature or mean-

density fields by the velocity fluctuations. Total velocity fluctuations, q, is

defined as:

q2 1 v_v_
= _(u'u'+ +w'w'). (29)

In the present simulations, the pressure fluctuations are several orders of

magnitude smaller than the velocity fluctuations. The validity of the Strong

Reynolds Analogy is checked directly in Figure 6. The density and tempera-

ture profiles coalesce as a consequence of almost uniform pressure field. The

velocity fluctuations fall within 20% of the analogy given in Eq. (28).

4.3 Spectral Analysis

Instantaneous data volumes were expanded in a Fourier series in homoge-

neous directions x, and z as:

k,, t)
kl k2

exp ikl--x + ik2 z (30)
Lx _ '

1 1
where Ikll <  Nx, Ik21<  Nz, Nx and Nz are the number of nodes in z

and 0 directions, respectively. The temporal behavior of the flow field and

the Fourier coefficients is assumed to be statistically stationary, therefore,

ensemble averages of the coefficients were taken over the sample data vol-

umes which had been saved. The maximum amplitudes in the wall-normal

direction are presented:

1 f0rmaximum [¢()']dt. (31)F¢(/Cl, ]c2) -- _ y
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where superscript, ()* denotes the complex conjugate operation, and F is the

time interval over which the time averaging is performed.

In Figure 7, the logarithms of the Fourier amplitudes (maxima in the

y direction) of total velocity perturbations (q2 in Eq. 29) are plotted over

the two-dimensional wavenumber space of (kx, kz) for two grid resolutions at

which the simulations were performed. The (0,0) mode is suppressed to bet-

ter relate the analysis to the turbulent (fluctuating) quantities. The spectra,

Fqq, reveal a smooth surface decaying from the lower to higher wavenumbers.

It is shown that the amount of decay is directly related to the separation of

scales in the turbulence and is strongly affected by low-Reynolds number ef-

fects. Consequently, higher resolution levels are required for simulating high

Reynolds-number turbulence. In the present simulations, amplitude decay

takes place over four decades from the largest scales to the smallest scales.

The decay is observable in every section of the two-dimensional wavenum-

ber space, convincingly indicating that the scales contained in the present

direct simulations are properly resolved. The dissipation end of the spectra,

corresponding to high kx and kz is devoid of any corrugations and does not

present any aliasing errors.

Details of the information from the Fourier analysis can be obtained

by studying the one-dimensional spectra. Essentially, the one-dimensional

Fourier analysis is equivalent to taking a section of the two-dimensional

Fourier space along the zeroth (mean) wavenumber in the other direction. In

this way, Figure 8 displays one-dimensional Fourier spectrum as a function

of k_ or kz on the log-log plots. Again, the zeroth mode is not included in

these plots. In general, the spectra tend to be smoother in the spanwise

direction than the streamwise. This general behavior was also observed by

Spalart (1988) in his simulations of incompressible boundary layers. The

streamwise velocity spectrum, Fqq reveals about seven decades of decay in

k, and six decades in kz. The spectrum, Fqq exhibits an inertial subrange

which is tangent to the -5/3 curve for about a decade. However short, this

inertial subrange indicates the separation of scales in the streamwise direc-

tion. On the other hand, no inertial subrange behavior is observable from the

kz-spectra. As it was concluded in the incompressible simulations of Spalart

(1988), much higher Reynolds numbers are required to see the development

of an inertial range in the spanwise direction.
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4.4 Two-Point Correlations

In the present problem, the turbulent flow field is assumed to be statistically

stationary (or quasi-steady), therefore, time-averaging is appropriate for the

collection of statistical measures such as the correlation tensor, so that the

averaged quantities are functions of the spatial coordinates. The turbulent

field variables used in this section are defined to be the fluctuating parts as de-

fined by the conventional Reynolds-decomposition (Eq. 22). When a spatial

direction is assumed homogeneous, it is more appropriate to describe spatial

separations than separate locations and to perform ensemble-averaging in

that direction. The present turbulent flow field is homogeneous in the x and

z directions and the formulation now becomes:

11Q¢,0(Ax, Az, y_, yb) - F L_ Lz

¢(x,y_,z) O(x + Ax,yb, z + Az) dz dx dt (32)

where -L_/2 < Ax < +L::/2 and -Lz/2 < Az < +Lz/2 are the separations

considered in the streamwise and the spanwise directions respectively and

a and b denote two spatial locations in the flow field. The above defined

double correlation function is generally normalized by the root-mean-square

quantities to be presented as the correlation coefficient:

R¢,e(Ax, Az, y_,yb) = Q_'e(Ax'Az'Y_'Yb) (33)

For no-separation case, Ax = Az = y_- yb = 0, one-point correlation

definition is directly recovered from the double correlation definitions.

Q ,o(AX = O,Az = O,yo,y ) = (34)

Figure 9 compares the two-point correlations in the (Ax +, Az +) plane

with one (computational) probe fixed at different y+ = y+ locations. These

distributions could be best interpreted as the horizontal cross-sections of a

typical event in the boundary layer. Smits et al. (1989) showed in their

experiments that large scale structures in the outer region are broader in the

spanwise direction for subsonic turbulent boundary layers than supersonic

boundary layers. The present work extends the validity of this conclusion

into the inner layer confirming the speculations of these authors.
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The striking changeof sign in -P_v with spanwiseseparation(Az +) im-
plies a high degreeof organizationof the large-scaleeddiessimilar to in the
incompressibleturbulent wall-shearlayers(Kovasznay1970).This consistent
behavior is the result of large eddieshaving a characteristic (or preferred)
structure and an orientation. According to Figure 9, positive Reynolds-
shear-stresscontributions areaccompaniedby negativecontributions in their
neighborhood. The strength of this negativeregion decreaseswith y+. In-
compressiblestudies (Kim, Moin & Moser 1987, Head & Bandyopadhyay
1981)showedthat during a typical burst event in the near-wall region, the
low-momentumfluid is carried awayfrom the wall regionproducing positive
Reynolds-shear-stress.Complementingthe strong bursts (on a statistically
averagesense),high-momentumfluid is sloweddownand brought to the near-
wall region by a weak sweepevent with negativecontributions to -P_v.
Robinson (1990) givesan extensiveaccount of possibleevents in the wall-
shearlayers,yielding the positive or negativecontributions to the Reynolds
stresses.The organizationof sucheventsis the key to revealthe dynamical
couplingbetweeninner andouter regions.The presentwork echoesthe same
argument for the compressiblewall-shearlayers at the supersonicvelocities.
Moreover,very strong similarity of the statistical distributions in the inner
and outer parts of the turbulent boundary layer is observedinstead of an
abrupt or even a gradual change. Consequently,the eventsand structures
arenot confinedto the near-wall region, they also extend or correlatewith
the outer layer.

The spanwiseextents of all correlations increaseconsiderablywith the
distancefrom the wall (Figure 9). This behavior is also clearly documented
in the high-Reynoldsnumber supersonicturbulent boundary layer experi-
mentsof Smits et al. (1989) and Spinaet al. (1991)may indicate a general
increasein the sizeof the structures in the wall-normal direction in accor-
dance with the mixing-length or Townsend's"attached eddy" hypotheses.
In the presentwork, it is shownthat the correlation distributions actually
contract in the streamwisedirection with the wall-normal distance,very vis-
ibly in the P_., P_w, and -P_. correlations and to a lesser degree in P_u.

These observations present strong evidence that turbulent events in the inner

and outer layers are structurally connected, i.e. they are different stages in

the evolution of a single structure. One mechanism in the evolution of these

events is turbulence mixing which causes spreading in the spanwise direc-

tion. The momentum-redistribution mechanisms are also plausible because
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the spreading rates of different velocity components are different. However,

some other mechanism should also be present to cause the effect that seems

to be a streamwise contraction.

Figure 10 compares the two-point correlations in (Ax +, y+) plane by fix-

ing one probe at different y+ locations. P_u distributions are not symmetric

around the zero-streamwise-separation line, Ax + = 0, but have an inclina-

tion toward positive separations. The same phenomenon was also shown in

the space-time isocorrelation distributions in the high-Reynolds number ex-

periments of Robinson (1986) and Spina et al. (1991) at M = 3. Despite

the one order of difference in the Reynolds numbers, the resemblance of the

present results in Figure 10 with the experimental results is very striking

and indicates that the basic structures of turbulence is relatively free from

Reynolds number effects. The dashed lines shown in the contours of P_u are

the loci of the streamwise separation at maximum correlation close to the

wall (y+ = 5.98). Away from the wall, the angle of inclination increases, and

the structure eventually aligns with the vertical at large distances from the

wall. Another interesting phenomenon is the change in the angle of inclina-

tion around Ax + = 0. Such increasing tilt angle of the structures with the

wall-normal distance is seen in the subsonic flows. However, the change in

the tilt-angles in Figure 10 is dramatically sudden. The same rather sudden

change in the inclination angles was also noted in the isocontours of P_ by

Robinson (1986) in the experiments with M = 3.0 turbulent boundary layer.

The tilting mechanism can also be observed from the increasing asymme-

try of the/_v, P_, and -P_v around Ax + = 0 line. Sudden shift of the

tilt angle is also evident in the contours of P_,/_, and -P_. Negative

regions seen in the (Az + ° +_ plane in the/_o correlations are observed to\ ,Ya )

occur for the positive streamwise separations below the core of the structure

and at the negative separations above it. The vertical length scale increases

away from the wall but the streamwise length scale seems to decrease because

of the change in the orientation of the structures.

4.5 Reynolds-Stress Budgets

For compressible flows, Favre (1965) introduced a variation of the Reynolds

decomposition which incorporates the effect of variable density through mass-
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weightedvariables:

¢(x,u,z,t) = _(_) + ¢"(x,y,z,t), (35)

where ¢ is the Favre-mean of the quantity ¢:

_(y) = p(x,y,z,t)¢(x,y,z,t) (36)

In general, for turbulent flows with density stratification or fluctuations, the

average of the Favre-fluctuation fields does not vanish while mass-weighted

average does:

¢"(x,y,z,t) s¢ O, (37)

p(x,y,z,t)C"(x,y,z,t) = 0. (38)

Using Favre decomposition reduces the complexity of the Reynolds-stress

budget equations of compressible flows considerably (Rubesin & Rose 1973):

0t

Pik -t- Oik q- Oik -t- Tik + Dik -- eik. (39)

Using the inner variables, u. and u/u., as velocity and length scales, the

terms in Eq. (39) are given as:

-- Ofil O_k (40)
Pik = -pu'_uy Oxj pu_'u_ cOxj

0 I . ._.\

Tik = --Ox----__'puiujuk] (41)

O_k= P \-g-_z_+ Oxk]

o oo,k = -Ox-5
0 (_ 0 _,-w=-_

Dik -- Oxj k k ,,1 -- _xj (ui rkj) (44)

Ou_ Ou_' (45)
elk : 7ij OX--_" "_- Tkj OXj
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where Pik, Tik, Oik, Oik, Dik, e-lk denote the production, turbulent trans-

port, pressure-strain, pressure-diffusion, viscous diffusion, and dissipation,

respectively. It should be noted that the decomposition of the pressure and

density into their mean and fluctuating parts is avoided in the present for-

mulations. The customary ()+ notation is omitted from the flow variables

which are expressed in wall units in this section. The notation will be kept

for y+ as a reminder that the wall-units are being used throughout.

For a statistically steady turbulent state, the sources and sinks appearing

on the right-hand-side of the budget equation essentially should balance. In

Reynolds-stress closure models, all high-order statistics which represent the

sources and sinks of Reynolds stresses are modeled and the equations pre-

sented in Eq. (39) are solved coupled with the mean-momentum equations.

The pressure-strain term is usually modeled directly whereas the pressure-

diffusion term typically is treated together with the turbulent diffusion term.

Also, the pressure-strain and pressure-diffusion terms are added together re-

sulting in the pressure-gradient/velocity correlation, Hij:

Op u". - Op .
II_j = 4'ij + Oij = -Tz_ _ Ox--_ju_

(46)

It is conjectured that the modeling of this compound term is physically not

plausible as suggested by recent DNS analyses of incompressible turbulent

flows (Mansour, Kim & Moin 1988, Huser & Biringen 1993) since Oij and

Oij assume opposite-values as l--Iij approaches to zero near the wall.

To estimate the correct behavior of sources and sinks in the budget equa-

tions is a formidable task, especially in the near-wall region where all the

terms are of comparable importance and the homogeneous turbulence as-

sumptions do not hold. In the present work, all terms in the Reynolds-stress

budgets are obtained directly from the present simulations. Hence, the crit-

ical assessment of model assumptions is done explicitly.

Within the horizontal periodicity approximation of the present mathe-

matical model, the streamwise and spanwise derivatives of the ensemble-

averaged quantities, as well as the wall-normal and spanwise Favre- or Reynolds-

mean velocities vanish, such that,:

0¢ 0¢
- -0, (47)

Ox Oz
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- -0, (48)
Ox Oz

_=_=0, (49)

= = 0. (50)

where ¢ denotes any fluctuating flow variable or quantity. These simpli-

fications are reflected onto the analyses of the individual budgets of four

non-zero Reynolds-stress components and the turbulent kinetic energy pre-

sented in Figure ll after ensemble-averaging in time and in the homogeneous

streamwise and spanwise directions. The results for lower grid-resolution case

(Case-Q1) are presented in the following sections.

4.5.1 pu "2 Budget

Figure lla gives the contributing terms to pu ''_ budget. The budget is bal-

anced to zero within 15% and the imbalance can be attributed to limited

sampling size and numerical truncation errors. The terms slowest to converge

are suspected to be the turbulent-diffusion terms since they are fourth-order

statistical moments (in incompressible flow they would be only third order);

pressure-gradient/velocity terms are also very slow to converge. The mag-

nitude of these terms are very small in the original non-dimensionalization

used in the computations, and significant precision is lost during rescaling

with the wall units.

The details of the near-wall behavior for M = 2.5 agree well with the

incompressible boundary layer DNS results of Spalart (1988). The largest

positive contribution to the budget is from the production terms correspond-

ing to the generation of turbulence through mean-flow gradients. The pro-

duction reaches a peak at y+ _ 20 and is balanced mainly by the dissipation.

The loss of turbulent energy by dissipation is maximum at the wall and de-

creases toward the outer layer. The local maximum in the dissipation loss

coincides with the maximum production indicating the close local coupling

between the two mechanisms in this equilibrium boundary layer. Viscous

diffusion is positive near the wall and becomes negative for y+ > 10 with

a local minimum in the maximum production region showing that the tur-

bulent energy produced is quickly diffused away. Turbulent diffusion on the

other hand, is zero at the wall, becomes positive and then negative with an

inflexion point at the maximum production area. The turbulence is carried
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away from the high production areastoward the high-speedflow, but is ac-
tually enhancedtoward the wall by turbulent diffusion. For this particular
Reynolds-stresscomponent,the pressure-diffusionis identically zero,conse-
quently,//11 = _n. Pressure-gradient-velocityterms areof smallmagnitude
but clearly negativethroughout the domain.

The magnitudesof the terms in the pu ''2 budget equation are almost an

order of magnitude lower than incompressible DNS results of (Spalart 1988).

There is also a scale discrepancy in the wall-normal direction, for example,

the maximum of the turbulent production in incompressible channel (Man-

sour et al. 1988) and boundary layer (Spalart 1988) simulations appears at

about y+ = 15 compared with y+ = 20 in the present compressible simu-

lations. These differences can be attributed to compressibility effects or to

the smaller Reynolds numbers used in the present simulations. Nevertheless,

the distributions are quite similar and the arguments in their interpretation

remain valid with finite compressibility leading to the conclusion that com-

pressibility effects attenuate the turbulence mechanisms without changing

the basic dynamics.

4.5.2 pv "2 Budget

The contributions to pv ''2 budget are shown in Figure l lb. This budget

contains no direct contribution from production terms and the major source

of energy is the pressure-gradient/velocity terms,//22" The loss in the pu "2

budget through//11 is redistributed by//22 and//33 into the pv ''2 and pw "2

budgets. The pressure-strain term is also widely referred as redistribution or

return-to-isotropy terms (Rotta 1951, Lumley & Newman 1977).

Figure 11b depicts//22 as the sum of _22 and 022 terms and Figure 12a

displays the pressure-strain and pressure-diffusion terms separately. As found

in the incompressible channel simulations of Mansour et al. (1988) incom-

pressible square-duct simulations of Huser & Biringen (1993), _'ij and Oij

assume very large magnitudes compared with the other terms of the balance

equation, but have opposite signs. Modeling two such large terms separately

may obscure the contribution from the other turbulent mechanisms and also

may misrepresent the true partition of the turbulent kinetic energy.

The positive contributions through //22 quickly attenuates close to the

wall and very close to the wall where y+ < 20, //22 changes the sign rep-

resenting a loss of energy from this budget. This wall effect is seen in the
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incompressible turbulent wall-shear flow simulations of Mansour et al. (1988),

Spalart (1988) and Huser & Biringen (1993), and referred to as the "splat-

ting" effect. Turbulent transport is ineffective in the region of "splatting",

and is positive when/-/22 is not substantial and negative when it is. Viscous

diffusion is positive close to the wall and negative for y+ > 40. Dissipation

loss is the substantial sink for this budget, increasing from zero at the wall

to a maximum around y+ = 70.

4.5.3 pw "2 Budget

Figure llc displays the distributions of all contributing terms in pw "2 bud-

get. As in the pv "2 equation, there is no direct contribution from the pro-

duction term to this budget and the main energy source is the pressure-

gradient/velocity term, H33 receiving energy via the 1/11 term. The pressure-

diffusion for this budget balance is zero, and consequently, H33 = _33 and

the maximum in the pressure-strain term occurs at around y+ = 30. The

only appreciable sink in the budget is the dissipation which locally balances

turbulent kinetic energy supplied by the pressure-strain terms. Close to the

wall, for y+ < 30, viscous diffusion is positive and is the dominant source term

for y+ < 5. The dissipation reaches a local minimum and increases rapidly

towards the wall to dissipate the energy transported by the viscous mecha-

nisms. Turbulent transport remains negligible throughout the domain.

4.5.4 Primary Reynolds-Shear-Stress Budget

The accurate prediction of the primary shear stress is very crucial because

turbulence production takes place by the interaction of the mean velocity

gradients with the primary shear stress (Hinze 1975). Any errors in the

prediction (or modeling) of primary turbulent shear stress will be magnified

in the mean streamwise momentum equation resulting in a less than accu-

rate mean velocity profile and subsequent poor estimates of the quantities of

practical concern such as the drag.

The balance of -pu"v" shown in Figure 1 ld includes a production term,

a pressure-diffusion term and a pressure-strain term. As in the pv "2 budget,

the pressure-diffusion and pressure-strain terms are almost identical but of

opposite signs and each is two orders of magnitude larger than the other

budget terms (Figure 12b). The production terms supply energy to the
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budget with a broad maximum region for 20 < y+ < 70. Conspicuously

different from the normal Reynolds-stress budgets, the main energy sink

in the -R_v budget is the pressure-gradient/velocity terms. Dissipation is

effective only for y+ < 30 mainly balancing the energy transported in by

viscous diffusion mechanism. Turbulent transport is small but positive close

to the wall (y+ < 30) and is negative further away.

4.5.5 Turbulent Kinetic Energy Budget

The turbulent kinetic energy (TKE) is defined as:

pu_'u_ t 1

TKE - 2 -2 _+ pv ''2 + pw"2) . (51)

For the present flow field the conservation equation for TKE is obtained as

the trace of Eq. (39). The source of production of TKE is the interaction

between the mean flow velocity gradient and the primary turbulent shear

stress.

Figure 1 le displays the near-wall distributions of the terms in the budget

and because of the strong similarity in the budget, the discussion offered

for the pu "2 budget is valid for the TKE budget except for the pressure-

gradient/velocity. The pressure-strain term does not exist in the incompress-

ible TKE budget equations since the fluctuation and the ensemble-mean

velocity field is solenoidal for M = 0:

Ou7-0. (52)
Oxi

Consequently, the TKE budget for the incompressible turbulent boundary

layers include small, positive pressure-diffusion contributions near the wall

for y+ < 15 (Spalart 1988). For the compressible turbulent boundary layer

considered here, the pressure-gradient/velocity term,/-/= • + 8, (Figure

11e) is small, finite, and negative. Figure 12c shows the partition of H

between • and 8. As in the pv "2 and -pu"v" budgets, _ and 4_ are of

almost equal magnitudes, but of opposite signs. The non-zero pressure-strain

term is an effect of compressibility and directly interferes with the partition

of the energy between the momentum components in the near-wall region.

The pressure-gradient/velocity terms are responsible for the transfer of

the turbulent energy generated in the pu "2 budget to the pv "2 and pw tt2
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budgets as shown in the previous sections:

/'/11 "-* --/-/22 --/'/33. (53)

In incompressible flows, this transfer takes place in a state of local and instan-

taneous balance, i.e. the turbulent energy generated at one location will be

instantaneously distributed between the momentum components. Therefore,

the energy transfer depicted in Eq. (53) is an equality at all times and at all

spatial locations. Pressure, which is a kinematic quantity in incompressible

flows , provides the necessary communication between the momentum com-

ponents. There should be no spatial or temporal delay in this mechanism

since the sound speed, the speed at which the information is passed through

the fluid medium, is infinite and the velocity field is always solenoidal.

In compressible turbulent boundary layer flows considered here, the local

(and instantaneous) balance of pressure-velocity interactions does not seem

to hold. For compressible flows, pressure is a thermodynamic quantity and

the sound speed is finite. Consequently, information transfer from point to

point takes place with a certain spatial and temporal delay through the fluid

medium. The orientations of the turbulence generating events could certainly

effect the communication between the momentum components. It is then

possible that a locally non-zero pressure-strain term is accommodated in the

TKE budget. At the relatively low Math number of the present simulations,

this effect is revealed only in the small, non-zero pressure-strain distribution

in the TKE budget. This effect should be accentuated with increasing Math

numbers where it contributes substantially to the TKE budget.

4.6 Modeling pressure-gradient velocity correlations

In this section, a recently proposed turbulence model (Speziale L: Sarkar

1991) for the pressure gradient-velocity correlation, llij, is tested and eval-

uated using the data base from the present direct numerical simulations. It

should be noted that experimentally these correlations are the most difficult

to measure and therefore DNS data are the only source for assessment of clo-

sure models developed for these terms. In second-order closure modeling, the

deviatoric (zero-trace) part of Ilij appears in the Reynolds-stress transport

equations:

, Op' , Op' 2u_ Op'= u,-- + (54)
Ox j Ox i 3 'O-_xj "
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Speziale & Sarkar (1991) assumed that the main compressibility effects

are through changes in mean density, and used a variable density extension

of the SSG model originally derived by Speziale, Sarkar & Gatski (1991) for

incompressible turbulent flows:

_[(C,_ + C_P)b#

-C2e(bikbkj-_II,ij)

--C4I_ (bikW3k -_- bjkWik_ij )

,,)]45 (l_C,II½)(_ij 1- _ (55)

where

(R,j-[Kf,j) (56)
bij = 2K

II = bijbij, (57)

s'J = -_\oxj + o_1' (ss)

1 (O_ti Ogj _ (59)
ffz,j = __\ Oxj Ox,1'

r'. Ou_
__ II. II

Rij -- PUi uj _30xj, e- , (60)

1 0gi (61)
K = -_R., P = -R, 30xj"

The dimensionless model constants were determined through invariance and

consistency arguments and optimized for incompressible, homogeneous tur-

bulent flows and are given as,

C, = 3.4, C 1 = 1.80, C2 = 4.2,

C3 = 1.25, C4 --_ 0.40, C* = 1.62. (62)
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For the present comparisons,the equations are expressedin wall-units. In
boundary layer flows, pressure-velocityinteractions are concentratedin the
near wall region, y + < 100. The near-wall region is a highly anisotropic part

of the field and it is recommended that wall functions should be employed for

the proper representation of this anisotropy of e (Speziale & Sarkar 1991).

Therefore, in Eq. (55), a wall function, f is introduced to modify C1 by Clf.

The function f varies between 0 and 1 across the sublayer, 0 < y + < 100,

and is given as:

f= 1-exp -A-7 (63)

where A + = 80 was used during the comparisons. Physically, the use of the

wall function amounts to relaxing the homogeneity assumption where it is

violated most severely, i.e. on the dissipation and production rates, e and P

respectively. In other words, it is the simplest way to patch the outer layer

solution to the near wall region.

The mean flow quantities including the Reynolds stresses, Rij, and the

turbulent dissipation rate, e, are explicitly obtained from the DNS data base

to calculate the terms appearing on the right-hand-side of Eq. (55). The

model prediction for//d is then compared with the DNS values obtained by

constructing the pressure gradient-velocity correlations in Eq. (54) directly

with no model assumptions.

Figure 13a presents the model prediction and the DNS construction for

//71 indicating that the magnitude and the behavior of the interaction term

are properly captured by the model; the comparison is also satisfactory for

//d 2 (Figure 13b) but the model cannot properly capture the "splatting"

effect which appears as a sign reversal in the very-near-wall-region. Sim-

ilarly, Figure 13c offers a comparison for //d showing qualitative agree-33,

ment between the DNS and the model. The comparison of the interaction

terms in the turbulent shear stress transport equation is given in Figure 13d

with significant distribution differences. The comparison at this proximity

to the wall is actually quite satisfactory considering that the model utilizes

the ideas from isotropic homogeneous turbulent flows. It should be noted

that, in general turbulence models are developed for high-Reynolds number

flows whereas the DNS studies such the present one suffer from low-Reynolds

number effects; therefore these comparisons should be interpreted considering
such differences.
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4.7 Instantaneous Fields

In this section, the cross-sectional views of instantaneous flow fields are pre-

sented and analyzed. Perturbation quantities obtained from Reynolds de-

composition of total quantities are used throughout the analysis. In all the

contour and vector plots, the turbulent field variables and the coordinate

directions are nondimensionalized by viscous wall scales (Equations 24 and

25) and are denoted by superscript ()+. For brevity, the customary notation

()' for the Reynolds-decomposed fluctuating quantities is not used. Since a

qualitative understanding of the turbulent structures and flow topology is

sought, the majority of results are given only for the lower resolution case.

To offer a better representation of the structures, the figures are not drawn

to scale.

Figure 14 presents the wall-normal perturbation velocity, v +, contours in

the horizontal (x +, z +) planes at different y+ cross-sections. The upwelling

motion of the fluid caused by the bursting events can be easily identified

by the positive contours whereas the negative contours are associated with

fluid motions towards the wall. The contours at y+ = 23 indicate that the

turbulent events actually protrude deep into the viscous sublayer. Short-

length turbulent structures are followed by long regions of laminar flow at

distances close to the wall. Away from the wall, the turbulent activity level

increases and the turbulent structures occupy a large portion of the flow and

longer positive contours in the streamwise direction indicates streakiness of

the flow structures. At y+ = 113 in Figure 14, the turbulence activity reaches

its peak and for increasing y+, the turbulence level decreases as the structures

have shorter streamwise extent and lose their streaky appearance.

Figure 15 displays (w+,v +) velocity vectors in the cross-stream plane.

The wall-normal extent of the plot is about one boundary layer thickness

(_+ = 270). In most of the instances, the upwelling motions are accom-

panied by decelerations, and the motions toward the wall are caused by

accelerations in the streamwise velocity. Negative uv correlation acts as a

positive Reynolds stress and regions of strong uv correlations correspond to

regions where streamwise momentum is diffused away from the wall by tur-

bulence. As the ejection extends away from the wall into the outer layer, it

loses its strength and expands while there is an inrush of fluid which detaches

the structure from the wall. the correlation between u + and v + is positive

yielding locally negative Reynolds-shear stress. The upwelling and down-
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ward motions interact in a intricate way. Strong bendings of either motion

correspond to a strong perturbation vorticity in the cross-stream plane. The

vortices generated with this or other mechanisms are subject to straining

and diffusive effects in the flow field as well as pairing and de-pairing vortex

interactions.

5 CONCLUSIONS

In this computational study, the effects of compressibility on the fully-developed

turbulence were investigated. This equilibrium turbulent flow includes the

anisotropy and inhomogeneity effects due to the existence of a solid bound-

ary. In general, broad similarities are found between the incompressible and

compressible turbulent boundary layers. However, significant differences ex-

ist due to the finite, supersonic Mach numbers of the present simulations.

The overall effects of compressibility on turbulence are manifested through

density gradients across the boundary layer, variable fluid properties, and

the damping effect on turbulent motions. The dissipative mechanisms are

enhanced in compressible flows which, in turn, result in less vigorous turbu-

lence in the boundary layer.

The present work provides a documentation of the energy balances and

the structural dynamics of compressible boundary layer turbulence. Quasi-

periodic structures and events in the turbulent boundary layer and the turbu-

lent energy balance are interdependent as the origin of structures are related

to turbulence production and their breakup to dissipation. Such strong-burst

and weak-sweep events have been previously identified in incompressible wall-

shear layers, and their origin has been connected with hairpin vortices. In

the present work, the large scale structures in supersonic boundary layers

are found to be broader in the spanwise direction and with a greater angle

of inclination toward the wall. Present computations revealed that these

events penetrate deep into the viscous sublayer. With the distance from the

wall, the inclination decreases and the structures assume up-right position

in the outer layer. Between the upstream and downstream parts of an av-

erage structure, there is a sudden change of the inclination angle. Vertical

scales of structures can be as large as 0.56, consequently, an average large

scale motion spans almost the whole boundary layer. Therefore, at least for

the low-Reynolds numbers of the present simulations, the dynamics of such
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eventsmay describethe wholeboundary layer.
The turbulent energybalanceis strongly similar to incompressiblewall-

shear layers: in the far field, the turbulent production balancesdissipation
and all contributing terms attain comparablemagnitudes in the near-wall
region. Compressibilityeffectsare responsiblefor the lowermagnitudesand
non-zerovaluesof the pressure-strainterms in the turbulent kinetic energy.
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